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Abstract

This paper presents a systematic method to design robust controllers from experimental data
S0 as to ensure that the controller is robust with 1espectto al plants which cannot be discounted
based on the data (to within a specified statistical confidence). The present paper extends previous
multi variable results to the structured uncertainty case anddemonstrates the benefit to control
synthesis of estimating uncertainty bounds in structured form.

1 INTRODUCTION

In recent years, control analysis and synthesis methods have been developed which ensure controller
performance and robustness with respect to norm-hounded perturbations in the plant description.
Yor linear time-invariant (1.1'1) plants, such perturbations 1epresent the designers lack of knowledge
about the true plant model. For linear time-varying (I, TV) plants such perturbations must also
capture temporal variation in the plant dynamics.

In the case of 1.T1 plants, uncertainties can be substantially reduced using experimental data
and system identification methods. This has led researchers to develop identification methods which
directly support robust control design. Such methods involve the estimation of a “plant set” rather
than a point estimate, and must produce uncertainty bounds in a form which can be incorporated
into robust control formulations.

Various methods of plant set estimation have been given in the literature. The various ap-
proaches can be roughly divided depending upon whether they use time-domain estimation as in
Kosut [20], Younce and Rhors [26], Goodwin and Salgado [18], or frequency domain estimation
asin 1 .amaire et. al. [21], Parker and Bitmead [22], Bayard [4], or)e Vries and Van den Hof
[11][1 2]. Methods within each category generally differ based on the types of inputs alowed (e.g.,
second-order stationary, white noise, periodic, persistent (excitation, etc.), the types of quantities
being estimated (e.g., plant dynamics, noise PSD’s, unmodelled dynamnics), model parametrization
(e.g., pole-zero models, FIR models, etc.), assumptions on the noise (e.g., bounded noise, bounded
noise DT, Gaussian noise, etc.), and the type of apriori information required (i.e., smoothness
priors, open-loop damping, model order, relative degree, etc.).




Related approaches which give hard bounds on the identified model error can aso be found in
Helm icki, Jacobson and Nett [19] and Gu and Khargoneka r [16]. However, these methods are not
directly comparable since they start by assuming that frequency data is available in a specific form
(i.e., with hard error bounds).

The plant set estimation method used in this paper has its roots in the approaches of Bayard
[4] and de Vries and Van den Hof [12], which utilize periodic and muitisinusoidal input excitation
in combination with frequency domain identification techniques. The particular plant set estima-
tion method used in this paper was developed in Bayard [5], and represents an extension of the
multivariable results in [7] to the “structured uncertainty” case. Structuring may be useful for re-
ducing conservatism in practica multivariable problems, particularly if there are variations in the
signal-to-noise properties between different channels. Such variations arise from differences in plant
dynamics, excitation methods, data length constraints, actuator power constraints, noise coloring
characteristics, etc., and should be expected in most MIM O applications.

Using multivariable structured plant set estimation, this paper advances a method to design
robust controllers from experimental data so as to ensure that the controller is robust with respect to
al plants which cannot be discounted based on the data (to within a specified statistical confidence).
A gpecial case of this unified estimation and control app: each has been demonstrated earlier for
single-input/single systems in [6], and for multivariable systems with unstructured uncertainty in
[9]. The present paper extends these results to the multivariable structured uncertainty case, and
demonstrates the benefits to control synthesis of estimating uncertainty bounds in structured form.

Section 2 provides a formulation of the problem and outlines basic analytical assumptions.
Section 3 and Section 4 respectively present analysis foinonparametr ic and parametric charac-
terizations of the structured uncertainty. Section5 provides an incorporation of the uncertainty
characterization into robust control design as illustrated by the two-car problem analyzed in Section
6.Final conclusions are given in Section 7.

2 PROBLEM FORMULATION

2.1 BACKGROUND

Consider the discrete-time multivariable system with output noise, given by,

y(1) = P(z"u(r) 4 o(7) @

where P(z7 ') is the n,-input, rig-output multivariable LTI plant, v € R"¥ is an output vector
disturbance, and 7 =1,2,.., denotes the discrete time index. It is desired to identify this system
in the following form,

Pz =Pz )+ Aa(2") )

where '?(2~!) is a nominal estimate of the true plant 7(27!),and A4(z!) is the additive uncer-
tainty defined as AA =P --1'0. Since the true plant is not known, it is desired to represent the
additive uncertainty in the form

AA = M/AQAWAI (3)

such that A is a structured norm-bounded perturbation (to be described in more detail later),
and W, and Wa: are stable rational transfer function matrices. The weighings Wai and Waz



arc then typically incorporated into the control design, toensure robustness properties over the
additive uncertainty set.

This paper presents a method for identifying a nominal plant estimate #°°, and weighting filters
W,,, Waz, from experimental data, such that the relation P =- F° -1 W,4,AW,4,; holds (for some
structured {]A||e < 1) to a specified statistical confidence 1 — o specified by the designer. These
quantities are then used to directly synthesize a robust controller C using standard packages such
as Balas et. al. [2], and Chiang and Safonov [1 O]) such that the closed-loop system has desirable
stability and performance properties for all plants in the u ncertainty Set,

The rationale is that if C can ensure some level of peiformance for al plants in this additive
uncertainty set, then the controller will work as designed when implemented on the real plant with
probability 1 — «. This approach eflects a marriage between the hard uncertainty bounds used in
modern ., robust control designs, and the soft bounds olitainable using statistical methods.

2.2 ASSUMPTIONS ON A-PRIORI INFORMATION

The estimation of a plant set requires the specification of certain a-priori information.The assump-
tions are given explicitly in this section.

Let” (X ) denote the maximum singular value of a matrix X. The following definition will be
needed.

DEFINITION 1 A MIMO linear time-invariant (I'TT) system with transfer function G(27!) is
said to be in D(M, p) if the impulse response matrix sequence {g(71')}%., defined by the Z-transform
relation 3202, 9(717)2"F = G(z7!) satisfies,

o(g(rT)) < Mp’ (4)

for some oo > M >0and 1> p>0. n

Simply stated, D(M, p) is comprised of all LTIsystems whose impulse response decays expo-
nentially. The main usefulness of Definition 1 is due to the next lemma.

LEMMA 1 Let G(27')e D(M, p). Then the derivative of G on the unit circle can be uniformly
bounded from above as follows,

_{dG(e71vT) TMp

5[ d6te ) o TMp

0( dw - (- pp ©

PROOF: see Bayardet. al. [8]. .

The bound in Lemma 1 insures a certain smoothness i n G and allows one to overbound errors
incurred interpolating in-between grid points.

ASSUMPTION 1 The true plant P(27') is a stable vnknownlinea; time-invariant (1,1'1) n,-
input .n,-output multivariable transfer function assumed to be in D(M,p), where M and p are
assumed known. .

The experiment design is now briefly described. Consider the periodic. input excitation design
into the nth input, composed of a harmonically related sum of sinusoids,




u(r,m) = 200 (ms) cos(wirT + ge(ny)) (6)
T=1
where T'is the sampling period, wi=:2nk/T,, T, = N1, n, < N,/2 - 1. Yor eflicient computation
using a Fast Fourier Transform (FF1') the total number of fiequency grid points N, should be chosen
as a power of 2.

The power is assumed to be normalized as,

ki:;ak(nl): 1 (7

where the relative power in each component {a;(n;) > 0.k=1,...n,} is assumed specified. In
order to minimize peaking in time domain the sinusoids arc phased according to Schroeder [25] as,

Be(m) = 2) " joy(n) ®

(Here, a dlightly modified form of the Schroeder phase is used in (8), as derived in Young and
Patton [27]). More recent expressions which use the Schroeder design as a starting point for
further reducing the crest factor of the multisinusoid signal (6) can aso be used (Guillaume €et. al.
[1 7]). The Schroeder phasing (8) is useful for implementations which must make the most efficient
use of input power subject to actuator saturation constraints. However, the actual choice of phase
does not effect the analysis or change any of the main results herein.

ASSUMPTION 2 Data for the multivariable case is assumed to be taken by performing =,
separate single-input multiple-output (SIMO) experiments, using a multisinusoidal excitation of
the form (6) with the full number of sinusoids n,:= N,/2 - 1 for each experiment. .

ASSUMPTION 3 The output disturbance v(7)€R" can be represented by v(r)=W(2"1)d(7)
where d(7)€R"v is a white zero-mean Gaussian vector noise sequence normalized such that
Eld(@&)dT(5))=6;-1;W(z"1)isa diagonal matrix of filters

W(z1) = I)iag{W(z'l,1),...,W(z‘1,ny)} 9)

where W (z~1, ny) is a minimum phase (stable and stably invertible) transfer function, n,= 1, ..., n,.

ASSUMPTION 4 Data from each SIMO experiment is taken while the system is in periodic
steady-state. =

ASSUMPTION 5 The input period N,7' of the multisinusoidal design (6) is long compared to
the time constants of noise filter W and its inverse W. 1. n

In this formulation, the designer has the freedom to choose the frequency shaping {a; (n,) and
the number of periods of data collected m(71) in each SIM O experiment.




3 NONPARAMETRIC STRUCTURED UN CERTAINTY

3.1 STRUCTURED UNCERTAINTY DESCRIPTION

An additive error A4(z7!) is used to characterize the mismatch between the true plant P(2~!) and
a nomina plant estimate P°(z71), i.e,

Az )=P(z"") - P (2') (lo)

It is desired to consider the structure of A, in more detail. The following definition will be useful.

DEFINITION 2 A partition of a matrix G <1<"'""” is defined as any set of integers,

X: {p7q;nl’"-a77p;l/ly'--aqu} (ll)

such that $°7_, 7 =n, and ) {_, vi = n.. From the set of integers in &', and the matrix G, one
can uniquely define the set of partitioned blocks,

K:(/Ya G) = {[ GJUE RV == 1. p .7 =1,.., Q} (12)

by using the construction shown in ¥Figure 1. Specifically, the matrix G is partitioned vertically
and horizontally into p and g segments, respectively, where the ith vertical segment is 7: rows tall,
and the jth horizontal segment is »; columns wide. Finally, an indez set ki (X) is defined which
contains indices of all elements in the ijth block of a partition &, i.e,

Kij(A) = {(n2.71) : Guon, is an element of block [Gli; ¢ K(X, G)} (13)
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Figure 1: Construction of Partition X ={p, ¢;M,....M;V1s. ...V}

EXAMPLE 1 Consider the matrix G € ‘R™,

Gy G Gz Gu
G=|Ga G G Gu (14)
Ga1 Gay Gaz G

Define the partition X' = {2, 2; 2,1; 2, 2}. Then the partitioned blocks [G],€ K(X, G’ and corre-
spending index sets are given below,

[ Gll GIZ

Eh = | o G”}; R(X)= {(1,1),(1,2),(2.1).(2.2)}
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Gly = Gu Gx i ka(¥) O {31,  30)}

Gl - 6.3 G348, () ={3.3),3,4)

m

Partitioning is useful because it can be used to structure the additive uncertainty. Given a
partition A’,one can define the plant blocks [P];; € K(X',7°) and nominal estimate blocks [7°]i; €
K(X,P°). Assume that a stable real rational filter wi;(2”* ) is known which overbounds the error

in the ¢5th block, i.e,
|wij (C—jw’l')l >7 ([P] ij(e_.jwq‘) ) [Po]ij(e—juyl‘)) for al we [0, /T
Then one can write the additive error n structured form as,

Agjywyy .. Ay wyg
. “
Ay = : .

Aplwpl P quwpq

for some set of norm bounded complex perturbations

A, eC™,5(A(w)) < 1;  foral wel0, n/T]

Equivalently, one has,

AA = WAQAWA]
where,
wicly, o wy, I, 0L L 0 0
Wiy = o0 o : € Rrvx(m)
KR 0 0
0 0 cor 0wy dy, Ly T,
1.
War=| i |€REmm
I,
A :diag[All, . ~,A1q’ ....... 7Ap], iy qu]ER(q.ny)X(p.n‘)

(15) |

(16)

(17)

(18)

(19)

(20)

(21)

where the notation 7, is used to denote the identity matrix of size n x n.The error A in (18)(17) has
the structure (21 ) which can be used with modern structured singular value analysis and p-synthesis

methods.




3.2 MIMO PLANT SET ESTIMATION

The goal of this section is to determine the uncertainty in structured form (16)(18) using experi-
mental data. This is equivalent to a plant set estimation problem, Where the plant set is required
to have a specific structure. The following definition introduces the notion of structured plant sets.

DEFINITION 3 A structured additive uncertainty set is defined as the set of plants P €
Q4(P°, X, L4) which is consistent with a partitioning &', a specified nominal /¢, and uncertainty
bounds L4 ={4j;(w),i=1,...,p, j=1,.., g}, ie.,

QA(PoaX, ‘CA) =
(P :(’5 H,-—P.g.) < f;(w), for al we [0, n/7), [P hie (X, P), [P lie k(A ey (22)

Simply stated, a candidate plant P(27!) is in the plant set Q.(F°, X", L4) if and only if it can
be represented as,

[Pliu(w) . . . [Plig(w)

PL@) - . . [Pla()

[Plin(w) . . [Phy(w) An(W)lin(w) . o Agg(w)big(w)
S : + z
[Po]m(w) st {PO]PQ(U’)) Ap (w)epl(w) - qu(w)epq(‘*’)

for some set of norm bounded perturbations & (A;;(w)) <1, and for al we [0, n/T].

The motivation for this definition is: if the true plant is known tolic in the set Qa(P°, X, L4),
and if each scalar function £:;(w) is overbounded by a rational function wi;(2~') of specified order,
i.e,

[wi;(e=74T)| > Lij(w) for all we(0,n/1] (24)

then the true plant can be written in the desired structured uncertainty form (16)(18). An algorithm
for systematically finding w;; which satisfy (24) can be foundinthe next section on parametric
structured uncertainty.

In Definition 3, the plant set is characterized completely in terms of the bounds £:;(w) contained
in £4- This notion is extended to statistical bounds in the following definition,

DEFINITION 4 The quantity, £ ={€;(w),i = 1,...,pj=1,...,q} is sad to be a structured
bound on the additive uncertainty with statistical confidence (1 - a)x100% with structure X’ if,

Prob{P € Qu(P°, X, Ly )} >1-a (25)
n

The significance of this definition is that £} ° characterizes (to statistical confidence (1 — )«
100%) a set in which the true plant P belongs. A statistical plant set description is useful since it
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can systematically capture variations due to noise in the data. There is little to be lost from such
an approach, since if a robust controller is designed to provide some specified level of performance
for all plants lying in the additive uncertainty set$24(F°, A", L), then with probability 1 — o the
controller will work as planned when applied to the true system.

A method for calculating the statistical overbound £4 from noisy experimental is given in the
next result.

THEOREM 1

__Given discrete-time L1T plant P(27!) € D(M, p), assume that noisy frequency domain data
{P(we)}Y_, are available on a grid on the unit circle O <w, , W~ <= /1, where T' is the sampling
period.

Assume that a plant partition A" is chosen, and let the accuracy of the data [f’];je K(X, f’) for
the ijth block be characterized by the quantity €; (k) such that the event F;;(k),
Eij(k): @ ([P];j(wk) - [ﬁ];,-(w;c)) < €i;(k) (26)

is satisfied with at least probability 1 — s at each grid point w;, and for each block i = 1, . . . p,

j=1, ..., q. Here, the events Ei;j(k) may or may not be statistically independent for different values
of i, 7, k.

Let 5([16].'1',40) be a linear spline interpolant o the data, i.e.,

[f]i;l(wl) ~ for w € [0,w)
S(Plssoo) = 4 Pls@0)+ 2525 (1Plienn) = Pl(@)) forw € (ool (g7

[P],-J-(wN) for w € (wn,n /T

and let P°(271) be any stable parametric model fit to the data, partitioned compatibly as [F"], €
K(X, P*). Define,
= {eij(w)vi = ]w--vpaj - ]""aq} (28)
where,
£ii(w) " Nij(w) + Cij(w) *i Lij(w) (29)
Noise Error
€;(1) for w ¢ [0,w]
Niji(w) =< €&;(k+1) forw € (wp,wiyy) (30)
€i;(N) for w ¢ (wy,n /T
Curve Fit Error

Cij(w)=7 (S([ﬁij]» w) (7 'o]ij(w)) (31)
Interpolation Error
E(S([P],],w) [ﬁ]u(wl) 4 Lo (}u%j);Mp for w € [0,w,]
i) = | 7 (SUPls,w) — [Ply(wens)) + 4290 for 1 € (wr, wa41] (32)
7 (S([P)ijw) ~ [Plij(wn)) + £ for w € (wy, 7 /7]



Then, £} is a structured bound on the additive uncertainty with statistical confidence, (1 —
a) X 100% where,

(1 - k)Nes if events E;;(k) are jointly independent for all i, j,k
(1 - Ns)*® if events E;;(k) are jointly independent for al ¢,
(1 - gx)N? if events Eij(k)are jointly independent for al i,k
(1 —pk)¥®  if events Eij(k) are jointly independent for all 7, k

I-a= (1—gN&)r if events E;;(k) are jointly independent fOr all? (33)
(1 - pNk)? if events Ey;(k) are jointly independent forall j
(1 - pgr)N i events £i;(k) are jointly independent for all k
(1 — pgN&) otherwise
i.e., with the choice of £ % in (28)(29) it follows that,
Prob{Pe Qu(P°, X, Ly*)}> 1 -« (34)

PROOF: The proof can be found in Bayard [5].

REMARK 1. The various options for computing 1-- « in (33) of Theorem 1 can be very useful
in practice. For example,

Rl If data is taken in separate SIMO experiments, the noise entering each experiment will
statistically independent. Hence, the errors in each column of the estimated transfer function
matrix will be statistically independent, and for any partition of the plant one can use the
relation (1 — a) = (1 — pNk)!. Furthermore, by suitable choice of partition, this approach
can be extended to the case where data is taken in separate Ml MO experiments, each using
a different disjoint subset of the available actuators.

R2 If the noise is known beforehand to be statistically independent from one sensor to the next
(due to spatial remoteness, geometric considerations, orthogonal inountings, etc.), the errors
in the rows of the estimated transfer function matrix will be statistically independent. Hence,
for any partition of the plant one can use the relation (1 - «)= (1 -- ¢Nk)?.By judicious
choice of partition, this approach can be extended to the case where the noise is known to be
independent between disjoint subsets of sensors.

R3 It is often the case (either exactly, or asymptotically), that errors incurred using frequency

domain estimation techniques are statistically independent fromn one frequency to the next.
In this case, one can use the relation (1 -- o) = (1 — pgr)™.

R4 If the above 3 situations (i.e., Rl ,R2,R3)are valid simultaneously, one can use the relation
(1—a) = (1-&)N?P2. Alternatively, the above cases can be combined 2-at-atime to make use
of the remaining relations (33), i.e.,, cases (R1 ,R2) imply that (1 o) = (1 — N&)P?; cases
(R2,R3) imply that (1 - @) = (1 - g&)"?; and cases (R1,R3)imply that (1 —a)=(1- px)N9.

R5 As a separate issue from statistical independence, it is often useful to define partitions which
separate the transfer function into blocks having similar error magnitudes. With this ap-
proach, if the errors in a particular channel or subset of channels is much larger than the
other channels, the remaining channels will not be unduly penalized in the robustness anal-
ysis. A similar argument can be made if the errors in any particular channel or subset of
channels are much smaller than the other channels. Partitioning based on error magnitudes
can be done with or without consideration of statistical independence between channels, by
using the more general expressions for 1 — « given in (33).

9
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As desired, £4* in Theorem 1 is a function only of the experimental plant data set x =
{M, p,{P(wi),&;(k)}ijx}-Values for M and p will be assuined known a-priori (they may be known
from the physics of the process, or found by impulse or step response experiments). Systematic

methods for finding {P(ws),;(k)}ijx with the desired properties in Theorem 1 under Assumptions
1-5, are given in Bayard [5].

4 PARAMETRIC STRUCTURED UNCERTA1NTY

4.1 UNCERTAINTY CHARACTERIZATION

‘I"his section presents an algorithm which solves the system posed by (24). That is, given the scalar
function 4;{w), one wishes to determine a rational function w;;(27') of specified order to satisfy
the inequality

|wij(e77T)] > £;(w) for all w € (0,7/7] (35)

To accomplish this goal, a nonlinear constrained optimization is posed to compute a minimum-
phase transfer function wij(27") of order m such that |wi;(e~7“T)| is a tight overbound on £i;(w)
for all w. Forming the quantity wi;(2)w;;(271) and evaluating on the unit circle gives an expression
of the form,

wi; (&7 Ywi;(e7T) = [’(;(% (36)

where,
B9 (w) = B + BYcos(wT)+ . .+ BYcos(mwT) (37)
a(w)=1+ajcos(wT) + ...+ C)", cos(mwT) (38)

It is noted that a(w) is defined as monic without loss of generality (i.e., ay=1) . Here the
indices ¢, 7 range over values determined by the partition defined by Definition 2. Thus, the
complete parametric overbound is determined by the coefficients oy, 87 fori=],....p,j=1, ., ¢,
k=1,..,m. Note that specifying a(w) to be a coinmon denominator (i.c., independent of ¢ and j5)
reduces the overal order of the parameterization.

Constraints for Overbounding

The requirement that |w;;(e™77)} be an overbound on 4 (w) is equivalent to the requirement
that |wi;|? is an overbound on £% and can be expressed as,
B (w)

(o) 2 Hiw) for allw € [0,7/7] )

Conditions for Tight Overbounding

The requirement that |’w.'j|2 be a “tight” overbound can be expressed as,

it é 40
Oéwl ! ﬁ‘lj(“’) ( )

o
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where, i
R R AD O (@)

Here, the criterion minimizes a worst-case error 8, which is frequency Weighted by the non-negative
quantity q;jl (w). Note that the optimization here includes all channels simultaneously in one
minimization problem (¢=1,...,p,7=1,...,9).

Constraints for Spectral Factorizability

The requirement that the overbound A% /o admits a spectral factor wi; can be satisfied by
ensuring that (Astrom [1])

BY (w)/a(w) >0 for all w €[0,7/T) (42)

cl(w) >0 for all we[0,n/1] (43)

Note that condition (42) is implied by (39), and condition (43) can be enforced explicitly by
the constraint,

ow)>a>0 (44)

for some small a. For technical reasons, it will be convenient to enforce a similar constraint on 3%
as

B (w)25>0 (45)
for some small S.

In summary, it is desired to solve the optimization problem (40) (41)for a(w), 8% (w) subject
to constraints (39), (42) and (43).

4.2 Solution on a Finite Grid

The constrained optimization problem restricted to points of the set A can be written as,

mind é (46)

i E?; ﬁk p}

s €03, .., 9}

k€ {0, .. m}

subject to . .

B (w,) ~ E?j(‘*’#)a(‘*’u) >0 (47)
59 (w,) — £ (W, )e(w,) < bg(w,)o(w,) (48)
B9 (w,) > B aw)>a (49)
for an i,j,w,, (i=1,..,p5=1,.,q;v=1,.72) (50)

where a(w) and 8% (w) are defined by (37) (38). A key observation, made in [24], is that for fixed

é the optimization over oy, B is simply a linear programming, problem to find @ feasible solution
for the coeflicients @x 3. Hence, the joint optimization problem can be solved by a nested search
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procedure where an outer-loop systematically decreases ¢ while an inner-loop finds feasible solutions
in the variables ¢, and 3} for fixed §. The procedure terminates when the smallest + is found
which admits a feasible solution. This approach is denoted as the LI’-Spectral Overbounding
and Factorization (LPSOF) Algorithm [24].

To solve the problem (12-13), one must begin with upper andlower bounds for the optimal
value §.For example, one can choose the lower bound é. = O and let the upper bound é, be
derived from some starting feasible suboptimal solution (an obvious choiceisa(w)=1, 89 (w)=
max; ju, £5;(w,)). Then §=1(6, + 6.)/2, becomes an updated value for é, or 6_ depending on
whether or not the inequalities (13) can be satisfied for §:=4é (i.e., the bisection method). In this
way the LPSOF agorithm converges to the optimal value of é geometrically, (i.e.,, as a power of
1 /2). Further refinements lead to additional speedup and other variations of the algorithm. More
details of this approach can be found in Scheid [24], where the focus was on S1SO systems.

5 STRUCTURED ROBUST CONTROL SYNTHESIS

Robust control methods such as H?, H* are well known design t echniques, applicable to systems
having unstructured (norm-bounded, frequency dependent) uncertainty. In contrast, the u-Synthsis
design technique is best suited for systems having structured uncertainty representations. The p-
Synthesis approach achieves less conservative (i.e., higher performance ) robust control designs by
optimizing a robustness criteria based on a p measure, o1 equivalently a structured (rather than
unstructured) singular value definition [13].

This section describes the p-Synthesis technique [14], for the purpose of designing a controller
which is robust with respect to the plant set, as identified in structured form using the estimation
and overbounding techniques presented in earlier sections. Mathematically, the goal of p-Synthesis
is to find a stabilizing controller X (s) and a diagonal scaling matrix /)(s) such that

DTy, D" Mo < 1

where T,,,, isthe matrix transfer function defined from the output of the additive uncertainty
block A4 to its input, with the controller K (s) in the loop (i.e., the transfer function “seen” by
the uncertainty, with the controller active). The diagonal scaling matrix I)(s) is the key to closing
the gap between the singular value (Small-Gain theorem)and the I, function (Canonical Robust
Control Problem) of the cost function. Readers are referred to [10] for detailed background.

An iterative design procedure called the 1)-K, Iteration will bring the solution of the robust
control problem close to “optimal” (reducing the gap between singular valueand p). The procedure
‘goes as follows:

Step 1: Set D(s) = I and use H* control method to find a controller K(s) which minimizes the
cost function [IDTY,U,D-ill@,

Step 2: Fix K(s) and compute the Structured Singular Value and the cost-minimizing diagonal
matrix D(s) (magnitude vs. frequency).

Step 3: Use a curve fitting method to realize a stable and minima phase filter for the diagonal
scaling D(s) over the frequency range of interest,

Step 4: If the structured singular value is close to and less than one, stop; otherwise go to Step 1,

12



6 EXAMPLE

A unified procedure for identification and control synthesis, has been developed in previous sections
based on the 2-step approach of first estimating the plant set in a struct ured uncertainty form, and
then utilizing a p-Synthesis routine to design a robust controller via the D-K iteration procedure.
This approach will be applied to a numerical example in this section.

The example consists of two-cars connected with a spring and damper, as shown in Fig. 2.

—\/\—] LWV 1
1 M1 -1

My
O 0 — 0 - -

Figure 2: Two Car Problem.

A force actuator and position sensor are assumed to be collocated o11 each car, giving rise to a
2-input/2-output system. The maximum and minimum singular values of the open loop plant are
shown in Fig. 3.

The objective is to compare a structured approach to plant set estimation using the fully
partitioned plant Xs= {2,2; 1,1, 1,1 }), with an unstructured approach using the unpartitioned
plant X« = {1, 1; 2; 2}. The control approach for the structured case will be p-synthesis, while the
control approach for the unstructured case will be a pure H* design.

Following the procedures of Sect. 3 and 4, the plant set is identified for the unpartitioned
plant, and a stable and minimal phase filter W, is determined to overbound the unstructured
additive error. A matrix weighting W1 is chosen to specify a desired performance objective. Both
weighings are appropriately used to augmented the open loop plant. With the given performance
weighting W1 and the additive weighting W2, no controller could be found. using singular value
mixed-sensitivity H* synthesis.

Following the procedures of Sect. 3 and 4, the plant set is identified for the fully partitioned plant
(e, Xs={2,2;1, 1; 1, 1}), and a set of additive uncertainties per each channel is realized by a set of
stable and minimal phase filters (see Fig. 4). ‘I'his set of filters (all with common denominator) are
realized in matrix form to give a matrix weighting function W2. Thesame performance weighting
matrix Wi is used as with the previous unparitioned case. The p-Synthesis procedure was applied
to the problem, The results are suinmarized in Fig. 5. Not only is a robust controller found, but
after two steps of the D-K iteration, the cost function showsan obvious improvement (the gap
between ;1 and singular values is reduced).

7 CONCLUSIONS

This paper demonstrates a method for constructing a structured uncertainty model representation
directly from experimental data, and then utilizing the structured model for robust control design.
Specifically, this approach produces a nominal plant estimate P° andthe additive uncertainty
weighting filters W,,, W42, such that the true plant lies in the additive uncertainty set P = P* +

13



Two-Car Problem (Plant Open Loop)
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Figure 3. T'wo Car Problemn (Plant Open Loop).
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Figure 4: Additive Uncertainty and Overbound.



MU-Synthesis {lteration # 1)
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Figure 5: Singular Value and p of the Cost Function.

W,_,AW,to a prescribed statistical confidence (1— a) x 100%, where A can be structured as is
appropriate to capture statistical independence and/or signal-to-noise variations between various
channels of the transfer function matrix. The usefulness of this representation is that any controller
designed to be robust with respect to P* and weights WA ;, Wa2 (designed, for example with the
software [10][2]), will work on the true system to the same (1 — «) x 100% statistical confidence.
The purpose of structured rather than unstructured bouuds is to ensure tighter bounds on the
estimation error and hence less conservative (i.e., higher performance) robust control designs.

8 ACKNOWLEDGEMENTS

This research was performed at the Jet propulsion Laboratory, California institute of Technology,
under contract with the National Aeronautics and Space Administration.

References

[1] X.J. Astrom, Introduction to Stochastic Control Theory. AcademicPress, New York, 1970.

[2] G.J. Balas,J.C. Doyle, K. Glover, A.K. Packard, R.Smith H-Infinity and Mu Control Analysis
. Mu- Tools Manual. The MathWorks Inc., 1990.

[3] D.S.Bayard, “An algorithm for state-space frequency domain identification without windowing
distortion s,” IEEE Trans. on Automatic Control, vol. 39, no. 9, pp. 1880-1885, September 1994,

[4 D.S.Bayard, “Statistical plant set estimation using Schroeder-phased multisinusoidal input
designs,” J. Applied Mathematics and Computation, vol. 58, pp. 169-198, 1993.

[5] D.S.Bayard, “Statistical structured uncertainty estimnation for multivariable linear systems,”
JPIL, Internal Document, D-12415, January 1995.

15



[6]

[8]

9

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

D.S. Bayard and R.Y.Chiang, “A frequency domain approach to system identification, uncer-
tainty characterization, and robust control design,” Pi oc. 32nd IEEL Conference on Decision
and Control, San Antonio, Texas, December 1993.

D.S.Bayard and F.Y. Hadaegh, “Multivariable plantsct estimation using multisinusoidal input
designs,” IFACSYSID Conference, Copenhagen, Denmark, July 1994.

D.S.Bayard, Y. Yam, E. Mettler, “A criterion for joint optimization of identification and robust
control,” IEEE Transactions on Automatic Control, Special Mini-lssue on System ldentifica-
tion for Control Design, vol. 37, no. 7, pp. 986-991, July 1992.

D.S.Bayard, R.E. Scheid, R.Y. Chiang, A. Ahmed, E. Mettler, “Automated modeling and con-
trol synthesis using the MACSYN Toolbox,” Proc. American Cent 101 Conference, Baltimore,
Maryland, 1994.

R.Y.Chiang and M.G. Safonov Robust-Control Toolbox. The MathWorks, Inc, 1988.

D.K. De Vries and P.M.J. Van den Hof “Quantification of model uncertainty from data: Input
design, interpolation, and connection with robust controldesignspecification,” Proc. American
Control Conference, Chicago, lllinois, pp. 3170-3175, June 1992.

D.K. De Vries and P.M.J. Van den Hof “Quantification of model uncertainty from experimental
data: A mixed deterministic-probabili stic approach ,“ Internal Report, Dept.Mech. Eng., Delft
University Techn., 1992.

J. C. Doyle, “Analysis of feedback systems with structured uncertainties ”IEE Proc., vol. 129,
Pt. D, no. 6, pp.242-250, Nov. 1982.

J. C. Doyle, “Structured uncertainty in control system design,” Proc. IEEE Conf. on Deci
and Control, ¥t. Lauderdale, Florida, 1985.

W. Feller, An Introduction to Probability Theory and its Applications. 3rd ed., Wiley, New
York, 1968.

G. Gu and P. I'. Khargonekar, “A class of algorithms for identification in Ho, ,“ Automatic,
vol. 28, pp. 299-312, 1992.

Guillaume, P., J. Schoukens, R. Pintelon, and |. Kollar, “Crest-factor minimization using
nonlinear Chebyshev approximation methods,” 1EEY. Trans. Instr. and Meas., vol. 40, no. 6,
December 1991.

G.C. Goodwin and M.E.Salgado, “Quantification of uncertainty in estimation using anem-
bedding principle,” Proc. American Control Conference, pp. 1416-1421, June 1989.

A.J. Helmicki, C.A. Jacobson and C.N. Nett, “Identification in I/.,: a robustly convergent,
nonlinear algorithm,” Proc. American Control Confer ence, pp. 386-391, San Diego, CA, June
1990.

R.L. Kosut, “Identification of systems with parametric and nonparametric uncertainty,” Proc.
American Control Conference, San Diego, CA, June 1990.

R.O.Lamaire,I.. Vaavani, M. Athans, and G. Stein, “A frequency-domain estimator for usc
in adaptive control systems,” Automatic, vol. 27, no. 1, pp. 23-38, 1991.

16

sion

“




[22]

[23]

[24]

[25]

[26]

[27]

P.J. Parker and R.R. Bitmead, “Adaptive frequency response identification, ” Proc. 26th IEEE
Conf. on Decision and Control, Los Angeles, CA, pp. 348-353, December 1987.

R.E.Scheid, D.S. Bayard, and Y. Yarn, “A Linear P1ogramming A pproach to Characterizing
Norm Bounded Uncertainty From Experimental Data,” Proc. American Control Conference,
Boston, MA, pp. 1956-1958, June 1991.

R. E. Scheid and D. S. Bayard, “A Globaly Optimal Minimax Solution for Spectral Over-
bounding and Factorization”, IEEF, Transactions on Automatic Control, accepted for publi-
cation (to appear, 1 995),

M.R. Schroeder, “Synthesis of low peak-factor signals and binary sequences of low auto-
correlation ,” IEEE Trans. Information Theory, January 1970.

R.C.Younce and C. I?. Rohrs, “ldentification with non-parametric uncertainty,” 1ELEE Trans.
Automatic Control, vol. 37, pp. 715-728, 1992.

P. Young and R.J.Patton, “Comparison of test signals for aircraft frequency domain identifi-
cation,” AIAA J. Guidance, Dynamics, and Control, May-June, 1990.

17



